Synaptic vesicle dynamic changes in a model of fragile X

نویسندگان

  • Jantine A. C. Broek
  • Zhanmin Lin
  • H. Martijn de Gruiter
  • Heleen van ‘t Spijker
  • Elize D. Haasdijk
  • David Cox
  • Sureyya Ozcan
  • Gert W. A. van Cappellen
  • Adriaan B. Houtsmuller
  • Rob Willemsen
  • Chris I. de Zeeuw
  • Sabine Bahn
چکیده

BACKGROUND Fragile X syndrome (FXS) is a single-gene disorder that is the most common heritable cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorders (ASD). FXS is caused by an expansion of trinucleotide repeats in the promoter region of the fragile X mental retardation gene (Fmr1). This leads to a lack of fragile X mental retardation protein (FMRP), which regulates translation of a wide range of messenger RNAs (mRNAs). The extent of expression level alterations of synaptic proteins affected by FMRP loss and their consequences on synaptic dynamics in FXS has not been fully investigated. METHODS Here, we used an Fmr1 knockout (KO) mouse model to investigate the molecular mechanisms underlying FXS by monitoring protein expression changes using shotgun label-free liquid-chromatography mass spectrometry (LC-MS(E)) in brain tissue and synaptosome fractions. FXS-associated candidate proteins were validated using selected reaction monitoring (SRM) in synaptosome fractions for targeted protein quantification. Furthermore, functional alterations in synaptic release and dynamics were evaluated using live-cell imaging, and interpretation of synaptic dynamics differences was investigated using electron microscopy. RESULTS Key findings relate to altered levels of proteins involved in GABA-signalling, especially in the cerebellum. Further exploration using microscopy studies found reduced synaptic vesicle unloading of hippocampal neurons and increased vesicle unloading in cerebellar neurons, which suggests a general decrease of synaptic transmission. CONCLUSIONS Our findings suggest that FMRP is a regulator of synaptic vesicle dynamics, which supports the role of FMRP in presynaptic functions. Taken together, these studies provide novel insights into the molecular changes associated with FXS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density

Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (Ca(V)) channels. Here we show that the functional expression of neuronal N-type Ca(V) channels (Ca(V)2.2) is regulated by fragile X mental retardation protein (FMRP). We find tha...

متن کامل

Proteomics, ultrastructure and physiology of hippocampal synapses in a Fragile X Syndrome mouse model reveals pre-synaptic phenotype

Fragile X Syndrome (FXS), the most common form of hereditary mental retardation, is caused by a loss-of-function mutation of the Fmr1 gene, which encodes Fragile X Mental Retardation Protein (FMRP). FMRP affects dendritic protein synthesis thereby causing synaptic abnormalities. Here, we used a quantitative proteomics approach in an FXS mouse model to reveal changes in levels of hippocampal syn...

متن کامل

Abnormal presynaptic short-term plasticity and information processing in a mouse model of fragile X syndrome.

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading genetic cause of autism. It is associated with the lack of fragile X mental retardation protein (FMRP), a regulator of protein synthesis in axons and dendrites. Studies on FXS have extensively focused on the postsynaptic changes underlying dysfunctions in long-term plasticity. In contrast, the ...

متن کامل

Proteomics, ultrastructure, and physiology of hippocampal synapses in a fragile X syndrome mouse model reveal presynaptic phenotype.

Fragile X syndrome (FXS), the most common form of hereditary mental retardation, is caused by a loss-of-function mutation of the Fmr1 gene, which encodes fragile X mental retardation protein (FMRP). FMRP affects dendritic protein synthesis, thereby causing synaptic abnormalities. Here, we used a quantitative proteomics approach in an FXS mouse model to reveal changes in levels of hippocampal sy...

متن کامل

Evaluation of the Effect of Aqueous Extract of Olibanum on the Expression of FMR1 and MAP1B Genes in the Rat Hippocampus

Introduction: The therapeutic properties of Olibanum have been considered in traditional medicine since ages past. Recent studies indicated the effect of Olibanum on memory enhancement and prevention/treatment of Alzheimer's disease. Fragile X mental retardation protein is the product of the FMR1 gene that mediates memory formation through the development of communications between nerve cells. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016